Source code for oats.models.predictive.nhits
"""
N-HiTS
-----------------
"""
from typing import Any
from functools import partial
from darts import models
import numpy as np
import numpy.typing as npt
import optuna
from oats.models._darts_model import DartsModel
[docs]class NHiTSModel(DartsModel):
"""N-HiTS Model (Similar to N-BEATS but faster)
Using N-HiTS as a predictor. Anomalies scores are deviations from predictions.
Reference: https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nhits.html
"""
def __init__(
self,
window: int = 10,
n_steps: int = 1,
use_gpu: bool = False,
val_split: float = 0.2,
**kwargs
):
"""
initialization also accepts any parameters used by: https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nhits.html
Args:
window (int, optional): rolling window size to feed into the predictor. Defaults to 10.
n_steps (int, optional): number of steps to predict forward. Defaults to 1.
use_gpu (bool, optional): whether to use GPU. Defaults to False.
val_split (float, optional): proportion of data points reserved for validation. Defaults to 0.2.
"""
model_cls = models.NHiTSModel
super().__init__(model_cls, window, n_steps, use_gpu, val_split, **kwargs)
def _model_objective(self, trial, train_data: npt.NDArray[Any]):
"""
params = {
"num_stacks": trial.suggest_int("num_stacks", 1, 5),
"num_blocks": trial.suggest_int("num_blocks", 1, 3),
"num_layers": trial.suggest_int("num_layers", 1, 4),
"dropout": trial.suggest_float("dropout", 0.0, 0.3),
"batch_size": trial.suggest_int(
"batch_size", 1, (len(train_data) - self.window) // self.n_steps // 4
),
}
"""
# return self._get_hyperopt_res(params, train_data)
return 0