Source code for oats.models.predictive.randomforest
"""
Random Forest
-----------------
"""
from typing import Any
from functools import partial
from darts import models
import numpy as np
import numpy.typing as npt
import optuna
from oats.models._darts_simple import SimpleDartsModel
[docs]class RandomForestModel(SimpleDartsModel):
"""Random Forest Model
Using random forest regression as a predictor. Anomalies scores are deviations from predictions.
Reference: https://unit8co.github.io/darts/generated_api/darts.models.forecasting.random_forest.html
"""
def __init__(
self,
window: int = 10,
n_steps: int = 1,
lags: int = 1,
val_split: float = 0.2,
**kwargs
):
"""
initialization also accepts any parameters used by: https://unit8co.github.io/darts/generated_api/darts.models.forecasting.random_forest.html
Args:
window (int, optional): rolling window size to feed into the predictor. Defaults to 10.
n_steps (int, optional): number of steps to predict forward. Defaults to 1.
lags (int, optional): number of lags. Defaults to 1.
val_split (float, optional): proportion of data points reserved for validation; only used if using auto-tuning (not tested). Defaults to 0.
"""
model = models.RandomForest
super().__init__(model, window, n_steps, lags, val_split, **kwargs)
def _model_objective(self, trial, train_data: npt.NDArray[Any]):
params = {
"n_estimators": trial.suggest_int("n_estimators", 30, 1000),
"max_features": trial.suggest_categorical(
"max_features", ["auto", "sqrt", "log2"]
),
"max_depth": trial.suggest_int("max_depth", 1, 5000),
# "ccp_alpha": trial.suggest_float("ccp_alpha", 0.0, 2e-2)
}
return self._get_hyperopt_res(params, train_data)