Source code for oats.models.predictive.randomforest

"""
Random Forest
-----------------
"""
from typing import Any
from functools import partial

from darts import models
import numpy as np
import numpy.typing as npt
import optuna


from oats.models._darts_simple import SimpleDartsModel


[docs]class RandomForestModel(SimpleDartsModel): """Random Forest Model Using random forest regression as a predictor. Anomalies scores are deviations from predictions. Reference: https://unit8co.github.io/darts/generated_api/darts.models.forecasting.random_forest.html """ def __init__( self, window: int = 10, n_steps: int = 1, lags: int = 1, val_split: float = 0.2, **kwargs ): """ initialization also accepts any parameters used by: https://unit8co.github.io/darts/generated_api/darts.models.forecasting.random_forest.html Args: window (int, optional): rolling window size to feed into the predictor. Defaults to 10. n_steps (int, optional): number of steps to predict forward. Defaults to 1. lags (int, optional): number of lags. Defaults to 1. val_split (float, optional): proportion of data points reserved for validation; only used if using auto-tuning (not tested). Defaults to 0. """ model = models.RandomForest super().__init__(model, window, n_steps, lags, val_split, **kwargs) def _model_objective(self, trial, train_data: npt.NDArray[Any]): params = { "n_estimators": trial.suggest_int("n_estimators", 30, 1000), "max_features": trial.suggest_categorical( "max_features", ["auto", "sqrt", "log2"] ), "max_depth": trial.suggest_int("max_depth", 1, 5000), # "ccp_alpha": trial.suggest_float("ccp_alpha", 0.0, 2e-2) } return self._get_hyperopt_res(params, train_data)