Source code for oats.models.predictive.rnn

"""
Recurrent Neural Networks (RNN)
-----------------
"""
from typing import Any, Literal
from functools import partial

from darts import models
import numpy as np
import numpy.typing as npt
import optuna

from oats.models._darts_model import DartsModel


[docs]class RNNModel(DartsModel): """Recurrent Neural Network Model Using RNN as a predictor. Anomalies scores are deviations from predictions. Reference: https://unit8co.github.io/darts/generated_api/darts.models.forecasting.rnn_model.html """ def __init__( self, window: int = 10, n_steps: int = 1, use_gpu: bool = False, val_split: float = 0.2, rnn_model: str = "RNN", **kwargs ): """ initialization also accepts any parameters used by: https://unit8co.github.io/darts/generated_api/darts.models.forecasting.rnn_model.html Args: window (int, optional): rolling window size to feed into the predictor. Defaults to 10. n_steps (int, optional): number of steps to predict forward. Defaults to 1. use_gpu (bool, optional): whether to use GPU. Defaults to False. val_split (float, optional): proportion of data points reserved for validation. Defaults to 0.2. rnn_model (str, optional): `RNN` (vanilla RNN), `LSTM`, or `GRU`. Defaults to `RNN`. """ model_cls = models.RNNModel super().__init__( model_cls, window, n_steps, use_gpu, val_split, rnn_model=rnn_model, **kwargs ) def _model_objective(self, trial, train_data: npt.NDArray[Any]): params = { "hidden_dim": trial.suggest_int("hidden_dim", 10, 256), "n_rnn_layers": trial.suggest_int("n_rnn_layers", 1, 64), "dropout": trial.suggest_float("dropout", 0.0, 0.3), "batch_size": trial.suggest_int( "batch_size", 1, (len(train_data) - self.window) // self.n_steps // 4 ), } return self._get_hyperopt_res(params, train_data)