Source code for oats.models.predictive.tcn
"""
Temporal Convolution Networks (TCN)
-----------------
"""
from typing import Any
from functools import partial
from darts import models
import numpy as np
import numpy.typing as npt
import optuna
from oats.models._darts_model import DartsModel
[docs]class TCNModel(DartsModel):
"""TCN Model (Temporal Convolution Network)
Using TCN as a predictor. Anomalies scores are deviations from predictions.
Reference: https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tcn_model.html
"""
def __init__(
self,
window: int = 10,
n_steps: int = 1,
use_gpu: bool = 1,
val_split: float = 0.2,
**kwargs
):
"""
initialization also accepts any parameters used by: https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tcn_model.html
Args:
window (int, optional): rolling window size to feed into the predictor. Defaults to 10.
n_steps (int, optional): number of steps to predict forward. Defaults to 1.
use_gpu (bool, optional): whether to use GPU. Defaults to False.
val_split (float, optional): proportion of data points reserved for validation. Defaults to 0.2.
"""
model = models.TCNModel
super().__init__(model, window, n_steps, use_gpu, val_split, **kwargs)
def _model_objective(self, trial, train_data: npt.NDArray[Any]):
params = {
"kernel_size": trial.suggest_int(
"kernel_size", 2, min(32, self.window - 1)
),
"num_filters": trial.suggest_int("num_filters", 2, 8),
"weight_norm": trial.suggest_categorical("weight_norm", [True, False]),
"dilation_base": trial.suggest_int("dilation_base", 1, 4),
"dropout": trial.suggest_float("dropout", 0.0, 0.3),
}
return self._get_hyperopt_res(params, train_data)