Source code for oats.models.predictive.tft

"""
Temporal Fusion Transformer (TFT)
-----------------
"""
from typing import Any
from functools import partial

from darts import models
import numpy as np
import numpy.typing as npt
import optuna

from oats.models._darts_model import DartsModel


[docs]class TFTModel(DartsModel): """TFT Model (Temporal Fusion Transformer) Using TFT as a predictor. Anomalies scores are deviations from predictions. Reference: https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tft_model.html """ def __init__( self, window: int = 10, n_steps: int = 1, use_gpu: bool = 1, val_split: float = 0.2, **kwargs ): """ initialization also accepts any parameters used by: https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tft_model.html Args: window (int, optional): rolling window size to feed into the predictor. Defaults to 10. n_steps (int, optional): number of steps to predict forward. Defaults to 1. use_gpu (bool, optional): whether to use GPU. Defaults to False. val_split (float, optional): proportion of data points reserved for validation. Defaults to 0.2. """ model = models.TFTModel super().__init__(model, window, n_steps, use_gpu, val_split, **kwargs) def _model_objective(self, trial, train_data: npt.NDArray[Any]): params = { "add_relative_index": trial.suggest_categorical( "add_relative_idex", [True] ), "hidden_size": trial.suggest_int("hidden_size", 8, 128), "lstm_layers": trial.suggest_int("lstm_layers", 1, 32), "num_attention_heads": trial.suggest_int("num_attention_heads", 2, 8), "hidden_continuous_size": trial.suggest_int( "hidden_continuous_size", 4, 32 ), "full_attention": trial.suggest_categorical( "full_attention", [True, False] ), "dropout": trial.suggest_float("dropout", 0.0, 0.3), } return self._get_hyperopt_res(params, train_data)