Source code for oats.models.predictive.tft
"""
Temporal Fusion Transformer (TFT)
-----------------
"""
from typing import Any
from functools import partial
from darts import models
import numpy as np
import numpy.typing as npt
import optuna
from oats.models._darts_model import DartsModel
[docs]class TFTModel(DartsModel):
"""TFT Model (Temporal Fusion Transformer)
Using TFT as a predictor. Anomalies scores are deviations from predictions.
Reference: https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tft_model.html
"""
def __init__(
self,
window: int = 10,
n_steps: int = 1,
use_gpu: bool = 1,
val_split: float = 0.2,
**kwargs
):
"""
initialization also accepts any parameters used by: https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tft_model.html
Args:
window (int, optional): rolling window size to feed into the predictor. Defaults to 10.
n_steps (int, optional): number of steps to predict forward. Defaults to 1.
use_gpu (bool, optional): whether to use GPU. Defaults to False.
val_split (float, optional): proportion of data points reserved for validation. Defaults to 0.2.
"""
model = models.TFTModel
super().__init__(model, window, n_steps, use_gpu, val_split, **kwargs)
def _model_objective(self, trial, train_data: npt.NDArray[Any]):
params = {
"add_relative_index": trial.suggest_categorical(
"add_relative_idex", [True]
),
"hidden_size": trial.suggest_int("hidden_size", 8, 128),
"lstm_layers": trial.suggest_int("lstm_layers", 1, 32),
"num_attention_heads": trial.suggest_int("num_attention_heads", 2, 8),
"hidden_continuous_size": trial.suggest_int(
"hidden_continuous_size", 4, 32
),
"full_attention": trial.suggest_categorical(
"full_attention", [True, False]
),
"dropout": trial.suggest_float("dropout", 0.0, 0.3),
}
return self._get_hyperopt_res(params, train_data)